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Algorithm

Cramer rule:
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where denotes operator for analog circuits and  operator for 
digital circuits,   is a vector of  images of analog circuit variables
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the determinant can now be calculated in the classical way:
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Implementation

with sparse matrix technique and partial pivoting and
is appropriate for analyses of huge circuits.

• case of the full pivoting:

• case of the partial pivoting:

CIA program has implemented two algorithms for reduction:
the first operates with full matrix technique and full pivoting
and is appropriate for accurate computations, the second

P P k nkk i k

n
ik← ∈ { }

=
max , , , 1 …

P P k nkk i k j k

i n j n

ij← ∈ { }
= =

= =
max , , ,

,

,
 1 …



���([DPSOHV�'HPRQVWUDWLQJ�D�3URJUHVV���([DPSOHV�'HPRQVWUDWLQJ�D�3URJUHVV
Power Operational Amplifier



Accuracy comparison of sparse double and sparse long double algorithms (   optimized).

   eigen=5*10-15,   round=10-19 full-matrix algorithm sparse double algor. sparse long double algor.

smallest pole (by magnitude) -1.76518 Hz -1.76518 Hz -1.76518 Hz
biggest pole (by magnitude) -7.31331*1010 Hz -7.31330*1010 Hz -7.31330*1010 Hz
smallest zero (by magnitude) -0.0847747 Hz -0.0847825 Hz -0.0847825 Hz
biggest zero (by magnitude) -6.99856*1010 Hz -7.04891*1010 Hz -6.99278*1010 Hz
constant of transfer function 0.988898 1.04496 0.989439
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Irregular 3 rd-order digital filter



z−1z−1z−1z−1

a0 = 0.03402554419029

a1 = 0.00621921616826

a2 = -0.00530557454473

a3 = 0.00612868652660

a a30 0=

a a4 26= = -0.00559342349260
a a5 25= = 0.00624262031546
a a6 24= = -0.00684884769613
a a7 23= = 0.00897910496988
a a8 22= = -0.00897865368875
a a9 21= = 0.01750107253210

a a10 20= = -0.00695363594317
a a11 19= = 0.03977449895168
a a12 18= = -0.06465598090179
a a13 17= = 0.08524095225662
a a14 16= = -0.13129215646492
a15 = 0.19514096846301

30th-order filter - accuracy compared using MATLAB and CIA
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The filter has 28 complex (14 pairs) and 2 real zeros as illustrated in Fig. 
If compare all numerals in MATLAB and CIA output files, we obtain: 
2 pairs have equal 5 valid numerals, 3 pairs have equal 6 valid numerals, 
and 2 real zeros and 9 pairs have equal 7 or more valid numerals.



Estimating a Frequency of Distributed Microwave Oscillator
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Diagram of poles of distributed oscillator:
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Steady-state of the oscillator Θ =( )0 3068.  ns  :



Xgs  (V) fo
( )ss  (GHz) fo

( )pz  (GHz) f f fo o o
( ) ( ) ( )pz ss ss−d i  (%)

-2.5 3.2733 3.1916 -2.50
-2.0 3.2916 3.3398 +1.46
-1.5 3.3670 3.2582 -3.23
-1.4 3.2308 3.1835 -1.46
-1.3 3.0693 3.3748 +9.96

Accuracy check by means of comparising poles-zeros and steady-state:



Conclusion

• The poles-zeros analysis has presented as a
useful tool that is not present in the PSPICE.

• Two ways of algorithm’s implementation
assessed: the first using full pivoting for
accurate computations and the second using
sparse coding for large-scale circuit analysis.

• An accuracy of sparse algorithms enhanced.
• Various abilities of the algorithms have been

illustrated by solving analog and digital
circuits in detailed way; especially the
accuracy has been evaluated.


